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Complex synchronization structure of an overdamped ratchet with discontinuous periodic forcing
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A deterministic overdamped ratchet driven by a periodic square driving force is shown to display chaotic
behavior. The system has neither temporal nor quenched noise but the strong nonlinearity of the driving force
produces a very rich bifurcation pattern with synchronized as well as chaotic regions. This pattern disappears
if a sinusoidal force replaces the square force. This unexpected behavior is explained by decomposing the
system into two exactly solvable subsystems, each with its own characteristic transit time, so that the ratio
between the period of the driving force and the transit times can be analyzed. The transition from synchronized
to chaotic motion can be explained by means of a one-dimensional Poincaré map. Our results can be experi-
mentally confirmed in a number of systems, including the three-junction superconducting quantum interference
devices ratchet, the rocking ratchet effect for cold atoms, and the Josephson vortex ratchet.
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I. INTRODUCTION

The ratchet effect was initially proposed as a model for
molecular motors [1,2], but more recently considerable the-
oretical and experimental works on ratchets have appeared in
a wide range of other areas not only in physics and engineer-
ing but also in social sciences [3]. For example, Gommers ef
al. [4] used an overdamped ratchet model to investigate the
route to quasiperiodicity in an experimental study of cold
atoms; the driven motion of domain walls in extended amor-
phous magnetic films was experimentally studied and theo-
retically described using an overdamped two-dimensional
(2D) ratchet effect [5,6]; voltage rectification by a supercon-
ducting quantum interference device (SQUID) ratchet was
predicted by Zapata et al. [7]; and the three-junction SQUID
was experimentally and theoretically studied by Sterck et al.
[8]. A ratchet effect was experimentally found by Carapella
and Costabile [9] in a relativistic flux quantum trapped in an
annular Josephson junction embedded in an inhomogeneous
magnetic field, and it was explained using an overdamped
ratchet with a rectangular periodic force. The transport of
magnetic flux quanta (vortices) in superconducting devices
was investigated in [10,11] and recently a deterministic un-
derdamped Josephson vortex ratchet was also experimentally
studied by Beck er al. [12].

The nature of the driving force plays a key role in the
ratcheting behavior. Recently, a number of different types of
periodic forcing have been considered in the study of ratch-
ets. Kostur et al. [13] found a rich variety of anomalous
transport by applying both a time-periodic (ac) and a con-
stant biasing (dc) current to a Josephson junction device.
Biharmonic driving has been studied in optical lattices [14]
and a periodic alternating delta function was considered in
[15]. Lade [16] studied a wide class of driving functions in
order to answer the question of optimal driving force in over-
damped ratchets, which is defined as the driving function
that achieves a maximum velocity. Lade [16] found that op-
timal driving wave forms are dichotomous. Chaudhuri et al.
[17] also studied an overdamped ratchet using a Langevin
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equation with multiplicative noise. Using this approach, they
explored the possibility of observing a phase-induced current
as a consequence of state-dependent diffusion. Machura et
al. [18] studied transport in an overdamped Brownian motor
moving in a ratchet potential that is driven by thermal and
dichotomic nonequilibrium noise in the presence of an exter-
nal constant load force in both the classical and the quantum
tunneling regimes. Finally, Air and Liu [19] studied the ef-
fect of reduced dimensionality in an overdamped Brownian
particle moving along the axis of a three-dimensional peri-
odic tube. They found that the reduction in the spatial dimen-
sionality leads to the appearance of not only an entropic bar-
rier but also an effective diffusion coefficient.

Two phenomena that have received less attention in the
study of ratchets are the synchronization and the chaos. The
synchronization of overdamped ratchets was studied by Ala-
triste and Mateos [20] and the underdamped case was con-
sidered in [21].

Synchronization appears in many problems concerning
oscillators and resonators [22]. Inertial and overdamped
ratchets are, respectively, included in these two classes be-
cause inertial ratchets and oscillators share the same equa-
tion, with the only difference that time is considered as a R!
variable for ratchets instead of the S! variable used in oscil-
lators; in a similar way, overdamped ratchets are equivalent
to resonators. Both inertial and overdamped ratchets have an
asymmetric potential energy producing ratchet force with
zero spatial mean value. Transport is produced by combina-
tion of this ratchet force with the periodic driving force,
which has zero temporal mean value.

Bifurcations, chaos, and multiple synchronization are
typical behaviors of many nonlinear systems. But chaos
seems precluded in resonators and overdamped ratchets,
even if they are driven by a periodic force, because they are
modeled by one or two first-order differential equations. The
well-known existence and uniqueness theorem of differential
equations states that solution exists and is unique for dy-
namical systems with a C'-vector field.

As a consequence chaos is precluded for dynamical sys-
tems of order <3. The Poincaré-Bendixon theorem also pre-
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cludes chaos in 2D systems but it requires a continuous and
differentiable 2D-vector field [23].

A possible way to obtain chaos in overdamped ratchets is
to make them stochastic. In [24] quenched noise was added
to a periodically driven overdamped ratchet and both chaos
and anomalous diffusion [25] were obtained with the
quenched noise strength as a control parameter. In [26] it was
reported that for quenched disorder with long-range spatial
correlations, diffusion becomes anomalous, and both the cor-
relation degree and the amount of quenched disorder can
enhance the anomalous diffusive transport. The analysis of
synchronization of the motion of particles with an external
sinusoidal driving force was studied in [27] for both a perfect
lattice and a lattice with quenched noise. In the quenched
noise case a new trapping mechanism was observed as re-
sponsible for the anomalous diffusion. An approximation to
the trapping probability density function in a disordered re-
gion of finite length included in an otherwise perfect ratchet
lattice was obtained in [28].

Another strategy is to increase the dimension by adding
an inertia term. This case was studied in several papers (see,
for example, [29-38]).

In this paper we propose another way to get a 2D system
that may have chaotic behavior: to use a discontinuous peri-
odic force as driving. Then the vector field is no longer C!
and chaos is not precluded. Trajectories for non-C' fields
may be discontinuous and chaos and multiple synchroniza-
tion becomes possible as it is the case for the model studied
in this paper. Our model also includes the same ratchet force
used in [27]. A periodic square-wave driving force was re-
cently considered by Salgado-Garcia et al. [39] in order to
obtain the necessary and sufficient conditions that the ratchet
potential must satisfy in order to have a vanishing current.
Salgado-Garcia et al. [40] extended the formalism in order to
study the robustness of current reversals in overdamped de-
terministic ratchets under symmetric forcing. They showed
that for the case of a periodic dichotomous forcing, current
reversal is not uncommon and exists for a nonzero measure
set of the parameter space. They also showed numerically
that, for a wide class of ratchet potentials, current reversals
also occur when the discontinuous dichotomous forcing is
replaced by symmetric continuous driving forces. The impor-
tance of rectangular periodic forcing has also been recently
considered in [41-44].

The main contribution of this work is to show that in this
simple model a rich bifurcation diagram emerges and both
synchronized and chaotic regions appear in the bifurcation
diagram. Our results complement those obtained by Cubero
et al. [45], who studied the drift velocity as a function of the
driving parameter and who theoretically predicted and nu-
merically confirmed the existence of zero velocity bands.
The synchronization pattern we are studying here is confined
to only a small region near the origin in their parameter
space.

The outline of the paper is as follows. In Sec. II the
single-particle model is presented. The bifurcation diagram
for the winding number as a function of the amplitude and
period of the forcing, as control parameters, is compared
with previous results for a sinusoidal driving force [28] in
Sec. III. In Sec. IV we analyze the synchronization between
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the particle motion and the periodic commutation with pe-
riod T/2 using two exactly solvable subsystems. Each sub-
system is studied by recourse to standard qualitative theory
and characteristic times 7, and 7_ (for forward and backward
motions, respectively) are analytically obtained. The bifurca-
tion diagram is then explained in terms of the relation be-
tween these characteristic times 7, and 7_ and the commuting
period 7/2. Furthermore, the boundaries of the synchroniza-
tion zones are obtained in Sec. V by an analytical argument.
A two-step one-dimensional map shows how bifurcations
arise. The maximal Lyapunov exponent A allows one to
verify that the system is chaotic for specific regions in the
parameter space. Finally, conclusions are presented in Sec.
VI

II. MODEL

We consider the motion of a particle in a perfectly peri-
odic lattice (without quenched noise) modeled by a forced
overdamped ratchet with a square wave as the external peri-
odic force. The dynamical equation is given by

yi=R() +F(1), (1)

where 7y is the damping coefficient, R(x)=—dU/dx is the
ratchet force, and F(¢) is the time dependent external force.

As in a number of previous studies, the periodic, asym-
metric, ratchet potential [24,28,30,31,45] is modeled by the
equation

Ux)=-A [ sin(2ma/\) + gsin(4 /N )

with the amplitude A and spatial period . Two consecutive
maxima define a valley of length N\. The time dependent ex-
ternal periodic force is modeled by the square wave of the

form
F() +I if0<r=T/2 3)
)=
- if T2<t=T,

where I" and T are the amplitude and the period of the force,
respectively.

We used a variable step Runge-Kutta-Fehlberg method
[46] technique in order to numerically solve Egs. (1) and (3).
Since we are interested in investigating the influence of pa-
rameters I and 7 on the transport properties of the ratchet,
we used the same values of the parameters as in previous
studies [24,27,28,32,35], namely,

A=1, N=2m y=1, wp=05. (4)

It is useful to introduce the following scaled variables for the
model (those with tilde are dimensionless variables):

(i) x=x/\ is the position of the particle along the ratchet
potential.

(ii) o=v/v,, with v,=N/T, is the velocity. The mean ve-
locity (D) gives the ratchet current.

(iii) x,=(x mod \), the reduced position, is the position of
the particle inside the potential.

(Vi) x;,, is the position reached by the particle at r=T/2,
starting at x,, with the external force F=+I".
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FIG. 1. Sampled velocity 7y, and mean velocity () of a particle
in a perfect lattice as a function of I' for a sinusoidal driving force.
The particle starts at X=0. Note the jumps in (o) at I
=0.96,1.22,1.47,1.57,1.75,1.76,1.95, but 0, has no bifurcations
in this range of I'. The label over each zone indicates the number of
valleys crossed by the particle, forward (+) and backward (), in a
period 7.

(v) {1, {x3%, and {v*?}, are the sampled position, the
sampled reduced position, and the sampled velocity, respec-
tively. They are defined by

Y ={x(kT),(k=0,1,...)},
0 =1{x,(kT7),(k=0,1,...)},

%Y ={vkT),(k=0,1,...)}. (5)

I3k L)

The superscript in the above definitions indicates that
sampling proceeds just before the jump from —I" to +I". Syn-
chronization with the external force is evidenced by the pe-
riodic {x,"} and {v*} time series and consequently these vari-
ables may be used to detect synchronization with the external
driving force [28].

II1. BIFURCATION DIAGRAM

Let us review the results for a sinusoidal driving force
I sin(Qr). Figure 1 corresponds to a perfect lattice (i.e.,
without quenched noise) [27]. The bifurcation diagrams of
0*@ and (0) as a function of I" are shown in Fig. 1 for I in the
range [0,2] and show that 7*® is a monotonic and also in-
creasing function of I" while () is a step function with
jumps at specific values of I'. As T increases the number of
valleys traversed by the particle during the positive and
negative cycle changes, producing the steps in (o). Labels
over each step indicate the number of valleys traversed dur-
ing positive and negative cycles. The motion of the particle
remains synchronized with the external force through the en-
tire range [0,2] as it is shown by the single value of T,.

Let us consider now the case of a square wave with am-
plitude I" and period T. Figures 2(a) and 2(b) show the bi-
furcation diagrams for (o) and 0*“ as functions of the control
parameter I' € [0,2.5] for T=15.067. Diagrams in Figs. 1
and 2 have been obtained by using method I described in
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FIG. 2. (a) Mean velocity (o) and (b) sampled velocity v, of a
particle as a function of I'; 7=15.067. The particle starts at X=0.
Note that (0)=0 for I'= u+1/(8u) and vy, has no bifurcations for
I'=sl+u.

[33]. In this method the simulation is done by resetting the
initial condition to the same value when I or T is changed.
At higher values of I' (not shown in Fig. 2) the particle
motion becomes oscillatory with a null current because the
ratchet force R(x) becomes negligible as compared to I'. The
intervals with constant (o) in Fig. 2(a) correspond to the
motion of a particle synchronized with the external force.
This is confirmed by only one 0°¢ in the bifurcation diagrams
in Fig. 2(b).

As will be justified in Sec. IV below, the sampled velocity
Uy, is zero for I'<(1+ u), provided the period is long enough
so that the particle can reach a stationary state during the
negative half cycle of the external square wave. When I’
> (1+ ), the system has both synchronized and nonsynchro-
nized regions in the [I',7] parameter space. Nonsynchro-
nized regions correspond to intervals in which (7) is not
horizontal in Fig. 2(a).

IV. SWITCHING BETWEEN TWO
EXACTLY SOLVABLE SYSTEMS

In this section we explain the complex behavior described
in Sec. III by considering the square-wave driving force with
a periodic switching period 7/2 for each of the two inte-
grable subsystems. Each subsystem has stable and unstable
fixed points for I'<<1+ u. For long enough T a particle al-
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ways reaches the nearest fixed point and stays in it and the
motion remains synchronized. But for I'>1+u, all fixed
points disappear and the complex behavior shown in Fig. 2
emerges.

The two subsystems are modeled by the following dy-
namical equations:

(a) =R(x)+I', nT<t=Q2n+1)T/2,

(b) ¥=Rx)-TI', Q@n+1DT2<t=m+1T. (6)

Note that each subsystem in Eq. (6) is modeled by a first-
order ordinary nonlinear differential equation and conse-
quently neither chaotic nor oscillatory motion is expected for
each subsystem.

Both (a) and (b) in Eq. (6) may be integrated as follows:

(x) = . v+(u)du’
=] Q
X) = u,
u=0 U_(Lt)
with
Ui(l/t) — ir+—R(u) (8)

The integrals in Eq. (7) may be evaluated analytically for
—m<x<. The results are as follows:

foq fi+ 1o
rr=4u g+ s
_1 (I-4pu+a)tan(x/2)
f+ _ tanh V=2+8T u+8u’~2a
= V=1 +41—‘,U,+4,u,2—a’
tanh‘l (—1+4 p+a)tan(x/2)
V2481 u+8u’+2a
ﬁ2) — 248 M

V—1+4Tpu+4u’+a’
a=\1-8Tu+8u?,

g =112 -4T uw+4u?, 9)

and

foy*+fo
du——",
g

_1 (1-4p+b)tan(x/2)

tanh™! ———

f— V=28 u+8u"-2b
(1)

- 1—4Tu+4u2-b

1 —1+4u+b tan(x/2)
V=2-8T u+8u’+2b
/ b
N—1-4Tp+4u’>+b

tanh™

fo)=

—_—
b=V1+8Tu+8u?,
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_ A AT 1.2
g =V12+4T u+4u. (10)

The fixed points x, , of subsystems (a) and (b) are given by
R(x*),, =I'=0. (11)

The stability analysis of these fixed points is straightfor-
ward from which the following conclusions may be reached:

(1) |T|<A[u+1/(8u)] particles oscillate between two
stable fixed points, one belonging to subsystem (a) and the
other to subsystem (b). Consequently in this I range both (o)
and 0, are equal to O [see Fig. 2 and see also a trajectory in
Fig. 4(a)].

(2) Alu+1/(8u)]<|T|<A[1+u]. In this region sub-
system (a) has no stable or unstable equilibrium points, but
system (b) still has two equilibrium points in each valley
(one stable and one unstable). When a periodic square-wave
force (with long enough T) is applied, the particle runs to the
right during the positive half cycle and goes backward to the
nearest stable fixed point of system (b) during the negative
half cycle. The particle stays there until the next positive half
cycle. Consequently, ratchet current () is positive and in-
creases in steps as I increases. Furthermore particle motion
is synchronized which the driving force as the bifurcation
diagram for 7°* shows [see Fig. 2(b)]. 7°*=0 in Fig. 2(b)
because in our simulations sampling is made just before the
positive half cycle starts, and for those sampling times the
particle rests on a fixed point of system (b) as pointed above
[see also a trajectory in Fig. 4(b)].

(3) For |I'| > A[1+ ] there are no longer any equilibrium
points in either subsystem (a) or subsystem (b). Synchroni-
zation may be lost and the rich behavior shown in Figs. 2 and
3 becomes possible. In our simulations using w=0.5 this
threshold value for |I'| is 1.5 [see also trajectories in Figs.
4(c) and 4(d)].

Let us now define the characteristic time 7, of subsystem
(a) as the time required for a particle, starting at x, to travel
a distance A, reaching the congruent position in the next
valley to the right. As explained above |I'| must be >A[u
+1/(8)] because for || <A[u+1/(8u)] stable fixed points
exist and the particle remains at rest instead of traveling
along the ratchet.

In a similar way the characteristic time 7_ of subsystem
(b) is the time required for a particle, starting at x,, to travel
a distance A, reaching the congruent position in the next
valley to the left. Now |I'| must be >A[1+u] to avoid par-
ticles getting stuck in a stable fixed point.

The characteristic times may be evaluated analytically
from Egs. (9) and (10), and the results are shown in Egs. (12)
and (13),

\/— 1+ 40w+ 4p® + 4p\[(T] + w)? = 1]
T, =

[T+ w)? = 1]@|C |- 8> = 1)
(12)

) \/ 1+ 4|0 - 42 + 4p[(= [T + w2 — 1]
e [(=|T]+ )= 1]8|T| e + 8> + 1)
(13)

To understand the influence of both parameters [I',7] we
evaluated the winding number as a function of I" and 7. The
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FIG. 3. (a) Mean velocity () and (b) sampled velocity o, of a
particle as a function of 7 for I'=1.513 =1+ u. The particle starts at
X=0.

reduced position x,(7) is the oscillation superimposed to the
net transport motion. Let 7, be the period of this oscillation.
Then the winding number p is the quotient between 7 and 7,
[33]. As long as p is rational, it may be expressed as the
quotient of two natural numbers: p=p/q. For this case, the
motion remains synchronized with the external force. Num-
ber ¢ amount of periods of the driving force is required to get
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FIG. 4. (a) Trajectories for different values of parameters I' and
T: (a) I'=0.5, T=15.067; (b) I'=1.3, T=15.067; (c) '=1.75, T
=15.067; and (d) oscillations superimposed to the transport motion
for I'=1.511, T=16.5.
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FIG. 5. (Color online) Winding number p as a function of I and
T. The particle starts at x=0. Colors (or gray scale) are used for
regions with a different divisor g for the winding number p=p/q:
pink (light gray) corresponds to g=1, blue (black) corresponds to
q=2, cyan (medium gray) corresponds to ¢g=3, purple (medium
gray) corresponds to g=4, red (dark gray) corresponds to 5<g
<100, and white (white) corresponds to ¢=100. See the labels on
the figure.

the same value of both the sampled reduced trajectory x*
and the sampled velocity v*“. To get the global synchroniza-
tion picture shown in Figs. 5-7 we colored each zone accord-
ing to the value of g. Values of g over 100 were regarded as
nonsynchronized motion and their associated areas on the
picture are colored white.

The central point of the “s-shaped” synchronization struc-
ture shown in Fig. 5 has T=15.067 and I'=1.513. Let
us stress that the curve (0) vs I' in Fig. 2(a) is a section in
Fig. 5 for T=15.067r. In a similar way Figs. 3(a) and 3(b)
show the bifurcation diagram for () and 7*%, respectively,
as functions of the control parameter T for I'=1.513 and
Te[137,16m7].

To explain how synchronization is related to the charac-
teristic times 7, and 7. we have imposed a grid over the
synchronization pattern for a wider region in the parameter
space: ' €[1.5,2.0] and T € [0.27,207]. The dotted lines in
Fig. 7 correspond to 7,,27,, and so on as functions of I'.

21 J J -
: )
~ 17
= [
15 | ‘ |
I — »
5 1.51 1.52 1.53 - 1.54 1.55 1.56 1.57

FIG. 6. (Color online) Zoom out of Fig. 5 for a wider range in
parameters I' and 7. The straight lines correspond to sections used
in Fig. 10
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FIG. 7. (Color online) Zoom out of Fig. 5 for a wider range in
parameters " and 7. A grid corresponding to nr, and n7_ as a
function of I' is superimposes over the synchronization regions.

Dashed-dotted lines correspond to 7_,27_, and so on as func-
tions of I'. Each intersection between a dotted and a dashed-
dotted line corresponds to a 7 value that is an exact multiple
of both characteristic times and for these values the trajec-
tory must be synchronized with the external driving force.

There are structurally stable as well as unstable intersec-
tion points: structurally stable intersection points have odd
grid coordinates (for example, one of these points in Fig. 7 is
7_,37,.). They are surrounded by synchronization regions
with g=1. Intersection points with both grid coordinates
even (for example, 27_,47,) also have g=1 but they are
structurally unstable. Finally, intersection points with one
even and one odd coordinates are also unstable and they
have p=2 (for example, 27_,57,).

V. ONE-DIMENSIONAL MAP AND BOUNDARIES
OF SYNCHRONIZATION REGIONS

For each pair of values (I',7T) the stroboscopic map
My =M may be constructed (Poincaré map) for the parti-
cle’s sampled reduced position, x*(n+1)=M[x}*(n)]. To
simplify notation we will discard the superscript sa in this
section.

The map may be determined as a composition M=M_
oM, of the forward map M, and the backward map M_. The
forward map M, is given by

M :x,(n) — x(1/2),

u=x(1/2)
f du=T)/2, (14)
=x,(n) v, (u)

where x(1/2) denotes the position, at t=7/2, of a particle
starting at the reduced position x,(n) for subsystem (a). The
backward map M_ is given by

M_:x(1/2) —» x(n+1),

PHYSICAL REVIEW E 80, 011127 (2009)
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FIG. 8. A sequence of Poincaré one-dimensional iterated maps
M? showing the tangent bifurcation for I'=1.5137 and (a) ¢=2 orbit
with T=13.667r, (b) bifurcation at 7=13.61, and (c) chaotic orbit
with T=13.587r.

=x(n+1)
f du=T2, (15)
u=x(1/2) U_(I/l)

where x(n+1) is the position, at t=7/2, of a particle starting
at the position x(1/2) for subsystem (b).

The analytical expressions of the integrals above are
given in Egs. (9) and (10). Special care is required to avoid
the value 7 in any limit of these integrals because they be-
come singular at this point.

A stable fixed point of the j-iterated map M’ (j=1,...)
corresponds to a synchronization region with g=j, as usual.

Using the one-dimensional map M, the boundary of any
synchronization region may be obtained. For example, in
Fig. 8, the case of a synchronization region with g=2 is
shown. The iterated map M? undergoes a tangent bifurcation
from g=2 to chaos, for I'=1.5137, as T diminishes from T
=13.667 to T=13.58 7. Another example is shown in Fig. 9
where the transition from a synchronized region with g=1 to
chaos is considered. In this figure, the point I'=1.515, T
=14.518m is on the boundary of the synchronization region.

Nonsynchronized regions (white regions in Fig. 5) are
chaotic despite the fact that each subsystem is one dimen-
sion. We generated hundred surrogates of v*¢ time series with
100 000 samples each for 1000 points chosen randomly in-
side the unstable region. For each series the distribution of
the maximal Lyapunov exponents A was evaluated. For each
series the mean value was found to be positive. For example,
for I'=1.511 and T=16.57 the mean value of the distribution
(A) is 3 and its variance o is 0.5, confirming that the time
series is chaotic.

There exists an equivalent approach for determining the
boundaries of the synchronization regions. Consider, for ex-
ample, a zone with g=1 and winding number p=p/1 (see
Figs. 5 and 6). For any I" and T inside this region, the time
series of the sampled reduced position will reach, after a
transitory time, a fixed point x;. Correspondingly, the dis-
tance D traveled by a particle over the ratchet during the time
T remains equal to p\. This distance D is obtained as fol-
lows:
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FIG. 9. A sequence of Poincaré one-dimensional iterated maps
M showing the transition from g=1 to chaos for ['=1.515 and (a)
g=1 orbit with T=14.8007r, (b) bifurcation at T=14.518r, and (c)
chaotic orbit with 7=14.2007.

(1) Evaluate x,,, from

=21
t+=T/2=f du. (16)
U=x U+(M)

(2) Then starting at x,,, evaluate x,,, from 7_=T/2 from

=Xnt1 1
t_=T/2=f du. (17)
v_(u)

(3) Finally, the distance D is simply x,,,; —x,,.

As x, (the reduced position of the particle) approaches its
fixed point xf, the distance traveled over the ratchet ap-
proaches the value p\ and consequently dD — 0. Since D is
a function of three independent variables, x, I' and 7, then
inside any synchronization region the following expression
holds:

U=xy

oD oD oD
—Al+ —Ax+ EAT' (18)

dD =
I’ dx

When T' (T) change, the condition dD=0 may be fulfilled as
far as % #0 and then AI' (A7) may be compensated by a
finite Ax. But as parameters approach those of the boundary
of the region g=1, % becomes negligible and the required
Ax diverges. Using Eq. (18) we can determine the boundary
of region p=1 looking for the values of I" (7) for which
dD/ox=0.

In order to find and expression for dD/dx let us consider a
particle “a” that starts its motion at x=x,,. At =0 the external
force starts its positive half cycle. At r=7/2 the particle
reaches position x,, and the external force switches to nega-
tive. From then on the particle “a” goes back until it reaches
position x=x,, at t=T. Let us now consider another particle
“b” starting its motion at x=x,+Ax. At r=T/2 this particle
“b” will reach position given by

PHYSICAL REVIEW E 80, 011127 (2009)

(=]

(a) 1.5 1.52 1.]§4 1.56

n

9ID/OX

(b) 1o 13 16 19

Tin

FIG. 10. (a) dD/dx,, as a function of I" for T=157 (see horizon-
tal straight lines in Fig. 6). (b) dD/dx, as a function of T for
I'=1.51 (see vertical straight lines in Fig. 6).

xll’,2=x1/2+ MA)& (19)
U+(xn)

By going on with this method it can be easily demonstrated
that

AD = (x2+1 - xs) - (xn+l - xn) (20)

_ U—(xn+l)v+(xl/2)

oo () @)

and

TABLE 1. Transitory time as a function of « for I'=1.730 63
and T=14.907 on the border of a chaotic region (see Fig. 5).

a q Tans! T
0.990 1 62
0.991 1 68
0.992 1 75
0.993 1 85
0.994 1 98
0.995 1 118
0.996 1 154
0.997 1 277
0.998 1 >1000
0.999 1 >1000
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oD
2w _ V_(X )V (x10) 1 (22)
dx  v(x,)v_(xy)
For x=x",
D v (v, (xy) (23)

ax* v, (x)v_(x))
Then the boundary corresponds to the following condition:
v_(x:*)v+(x1/2) ~1=0, (24)
v (v_(xy)2)
which leads to
R(x") = R(xy). (25)

Figure 10(a) shows dD/dx for constant T=157 and vari-
able I (see the horizontal straight line in Fig. 6). The bound-
ary corresponds to the value of I' that makes dD/dx=0. In a
similar way Fig. 10(b) shows dD/dx for constant I'=1.51

r+ I sin[27t,/{(1 - a)}T]
+T

F(t)=9 =T sin[27(t, - T/2)/{(1 — &) T}]
-T

L+ I' sin[27(z, — T)/{(1 — a)T}]

where 0=a=1 is the control parameter of the connection
steepness and z,=(f mod T). When this F(z) is used instead of
that in Eq. (3) the system will reach a synchronized state but
for parameter values [I", T] corresponding to chaotic regions
(white regions of Figs. 5-7) the transitory times tend to in-
finity as « approaches 1 (discontinuous case). Table I shows
this effect. Consequently our results will be observed, in
practical, in experimental cases using realizable rectangular
forces.

VI. CONCLUSIONS

In summary, a rich complex behavior including synchro-
nization and chaos is presented in this paper for an over-
damped ratchet forced by a square wave. Finite inertia terms
or temporal or spatial stochastic forces, commonly associ-
ated with a chaotic behavior, are not present in our model.
The bifurcation diagram of the winding number reveals an

PHYSICAL REVIEW E 80, 011127 (2009)

and variable T (see the vertical straight line in Fig. 6). The
boundary corresponds to the value of T that makes dD/dx
=0.

Using this analysis it is easy to prove that the intersection
points of the grid in Fig. 7 corresponding to odd multiples of
both 7, and 7_ are structurally stable. To see this, consider
the intersection between (i7,) and (j7_) with both i and j odd
integers. For a particle starting at x,=0, x;,=i\/2 and x,,,;
=(i—j)\/2. Then, x,,, is congruent to x, and also to x=0.
Furthermore, R(x,)=1.5# R(x,,,)=-0.5. Therefore, the point
does not belong to the boundary and the system is structur-
ally stable.

A discontinuous force is a singular function. Real square
waves are smooth and if a smooth function is used as driving
force the existence and uniqueness theorem precludes chaos
in our model. Then the robustness of our results must be
analyzed. A smooth square force may be constructed as
follows:

if 1,<(1-a)T/4

if (1-—a)T/d=<t,<T2-(1-a)T/4

if 72— (1-a)T/4<t,<T/2+(1 - a)T/4 (26)
if T2+ (1—a)T/d=<t,<T—-(1-a)T/4

if t,>7T-(1-a)T/4,

interesting structure, induced by the switching process, with
synchronization regions of different periods as well as cha-
otic regions. A grid using the characteristic times 7, and 7_ as
coordinates was used to characterize it systematically. Re-
sults are robust in the sense that transitory times increase
without limit as smooth square force approaches the discon-
tinuous case. The results presented in this paper, particularly
the existence of bifurcations and chaos, may be experimen-
tally confirmed in a number of experiments, including the
three-junction SQUID ratchet [8], the rocking ratchet effect
for cold atoms [14], and the Josephson vortex ratchet [12].
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